
N94- 35068

Group-Oriented Coordination Models for Distributed Client-Server Computing

Richard M. Adler and Craig S. Hughes

Symbiotics, Inc.
725 Concord Avenue

Cambridge, MA 02138

ABSTRACT

This paper describes group-oriented control models for distributed client-server interactions.

These models transparently coordinate requests for services that involve multiple servers, such

as queries across distributed databases. Specific capabilities include: decomposing and
replicating client requests; dispatching request subtasks or copies to independent, networked
servers; and combining server results into a single response for the client. The control models
were implemented by combining request broker and process group technologies with an object-
oriented communication middleware tool. The models are illustrated in the context of a

distributed operations support application for space-based systems.

INTRODUCTION

The dominant architecture for distributed systems today is the client-server interaction model.
One application, the client, requests a service from a single provider, or server, which performs
the desired task and returns the result to the client (cf. Figure 1). Examples of servers include
transaction database systems, specialized graphics and numeric processing engines.

initiate requestfor service 0 receive request

receive &process response 0 issue response

perform
service

Figure 1. Client-Server model for distributed interaction

As distributed systems grow in complexity and scope, clients often need to interact with
multiple servers. For example, a client may issue queries for information that is distributed
across multiple, independent databases. Similarly, one application may need to notify various
other programs that may be affected by its activities. Such one-to-many interactions are
becoming increasingly important in domains such as decision and operations support,
concurrent engineering, cooperative workgroups, office automation, and process control.

A special class of one-to-many interactions involves servers that can perform the same task(s),
or functionally redundant systems. The most obvious form of functional redundancy is exact
replication, such as distributing multiple copies of an application or database across a network
of computers. Redundancy can also be achieved by replicating functionality through alternative
technologies or methods. For example, intelligent advisory systems can be implemented using
neural nets, rule-based or model-based reasoning systems. Combining such alternative methods
exploits their complementary strengths, and can enhance the completeness, precision, and
certainty of service responses.

Functional redundancy facilitates fault tolerance and resource availability, which are important
attributes for mission-critical applications. Replicating servers or data resources enhances

P_(tOi¢4@ ia.4,SE BLA/(_. I_OT FK_D
305

reliability by enabling distributed systems to be reconfigured, often automatically, to recover
from single point failures. Availability of scarce or heavily-used resources is augmented by
allowing concurrent access to multiple distributed copies, for increased performance and
convenience.

This paper describes two control models that transparently coordinate distributed interactions
between a single client and multiple, possibly redundant servers. Clients access the control
functions of these models through a uniform, high-level Application Programming Interface
(API). The API enables clients to issue service requests and process responses more or less
oblivious to the complex distributed processing that is actually required to satisfy their requests.
These coordination models are implemented by combining request broker and process group

technologies with an object-oriented communication middleware tool that runs across
heterogeneous computing platforms.

The following sections review the basic control requirements for one-to-many client-server
computing and enabling software technologies that meet these requirements. The remainder of
the paper describes and illustrates the new coordination models.

COORDINATION REQUIREMENTS FOR ONE-TO-MANY INTERACTIONS

Given enabling tools for network communication, distributed control for one-to-one client-server

applications is fairly straightforward. Clients initiate interactions by issuing requests. Servers
respond, and clients complete the cycle by processing results. The primary source of control
complexity arises from detecting errors, such as dropped network links or computer failures,
and recovering from such problems in a consistent, predictable manner (Coulouris, 1988).

Introducing multiple servers complicates control requirements significantly. Three basic cases can
be distinguished. A client may request a single service to be replicated across functionally
redundant servers (Case 1). Alternatively, a client request may decompose into distinct service
subtasks, which can be performed separately by different servers. Subtasks for such complex

requests may be mutually independent (Case 2) or they may exhibit interdependencies (Case 3).
Case 3 dependencies generally entail sequencing or synchronization constraints on how subtasks
are performed, and are common in process-oriented or workflow applications. Adler (Adler,
1992a) describes a distributed control model that addresses this class of client-server
interactions. This paper focuses on coordination models to support replicated requests (Case 1)
and complex requests comprised of independent subtasks (Case 2).

Replication entails distributing a client's request to functionally redundant servers. 1 In contrast,
the servers for subtasks obtained by decomposing complex service requests tend to be

functionally related but disjoint. In both cases, results from servers must be collected, possibly
post-processed, and returned to the client. Service results are post-processed through
combinational techniques such as collation, competition, or synthesis. Collation simply collects
subtask results into a consistent, uniform format. For example, status codes returned from an

update operation on replicated databases might be collected into a list. Competition compares
collated results with respect to one or more metrics, selectively filtering results based on their
scores. A simple example is the precedence metric, or race competition, which scores results
based on their order of arrival. Finally, synthesis combines and reconciles partial results.

Examples include: relational join, logical union and intersection operations; voting schemes;
merging and reconciling partial segments into global plans or schedules; and rank ordering

1 For present purposes, replicated requests are assumed to be "simple" in the sense that each
server responds to a copy of the request as one discrete action. Also, redundant servers incur
additional requirements to coordinate the order in which they process replicated requests if it is

necessary to maintain consistent state across interactions, as in mirrored transaction databases.

306

diagnostic hypotheses using weighted frequencies of candidates derived by complementary fault
isolation methods.

The burdens of control for one-to-many interaction models can be allocated to: the client; the
servers; combinations of the two; or to independent distributed coordination structures. The
first three "hardwired" approaches lead to basic system engineering problems, such as limited
reusability, maintainability, and extensibiiity across different clients and client-server

associations. Accordingly, we adopted the fourth strategy, by establishing autonomous
coordination models or engines. These engines, called Server Groups, function as generic, system-
level servers for implementing one-to-many interactions in a distributed application. The next
three sections review the distributed computing technologies that were synthesized to create two
distinct Server Group engines: process groups, request brokers, and communication middleware.

Table 1. One-to-Many Client-Server Relationships

.Request type] Subtasks Server Functionality. Coordination Tasks

replicated ,. redundant duplicate request, route requests, synchronize
state, combine results, handle errors

complex independent disti'nct decompose request, route subtasks, combine
results, handle errors

complex dependent distinct decompose request, sequence subtasks to
reflect dependencies, route subtasks, combine
results, handle errors

PROCESS GROUPS

A process group consists of a collection of processes, typically a set of applications, that jointly
provide one or more services on a continuous basis (Liang, 1990; Kaashoek, 1993). Group
processes are typically distributed across networked computers, operate in disjoint address
spaces, and communicate via message-passing mechanisms. A group is closed if communication
is restricted to members of the group; otherwise, the group is open. Interactions between a group
and an external process (or group) are called intergroup communication. Interactions among
members of a group constitute intragroup communication (cf. Figure 2).

Intergroup communication Intragroup communication
I ! ! !

request

reply

Figure 2. Open Process Group Architecture for One-to-Many Client-Server Model

Process groups provide a natural control framework for organizing collections of servers that are
functionally related or redundant, mediating all intergroup and intragroup interactions between
applications playing client roles and those acting as servers. The utility of process group models
for supporting complex and replicated service requests hinges on the concept of group
transparency, which simply means that a client may treat a group's service as if it were provided
by a single server.

In particular, all group members are identified by a single group name, which acts as a logical
address for all intergroup and intragroup communication. Clients need not track either group

307

membership(naming transparency), nor the host computers for individual group members
(location transparency). These properties are especially attractive for interacting with groups
whose membership is dynamic and/or mobile. Groups collect and post-process service results

produced by member servers over extended time intervals (reply-handling transparency).
Finally, clients need not deal with partial failures (fault-handling transparency), in that group
interfaces either conceal single point member faults or indicate total failure. In short, group

transparency fully conceals the distributed architecture and distributed behavior internal to a

process group from clients.

REQUEST BROKERS

Simple, static client-server applications tend to support a limited number of distinct services,
such as file, print, and database sharing. In such systems, it is relatively straightforward for
client programs to keep track of the services that are available and which servers support those
individual services.

In larger distributed systems, it becomes difficult to sustain this "hardwired" strategy, in which
each client assumes responsibility for knowing about available services, their associated servers,
and interfaces. Maintaining and extending such knowledge for individual clients is particularly
cumbersome for distributed systems such as CAD or CASE frameworks, which evolve

continually as server applications are enhanced, added or replaced. The notion of a service
request '_oroker" was developed to provide clients with global, system-level support for tracking
available services and servers. This strategy has been promoted by the Object Management

Group, whose Common Object Request Broker Architecture (OMG/CORBA) specifies a
standard for distributed object management systems (OMG, 1991).

A request broker is basically a control mechanism that mediates interactions between client
applications requesting services, and server applications capable of responding to such requests.
All applications that belong to a distributed system register the services that they support, their
locations, and their client interfaces with the broker. Typically, the broker maintains a directory
to store this information. Once this registration process is complete, any application that

requires a service requests it from the broker. The broker identifies an appropriate server for the
requested service using its registration directory, forwards the request, and relays back the
response to the client (cf. Figure 3). (Note: OMG divides these broker and directory functions
between the Object Request Broker and Object Trader Service.)

Q sCeliervnte _ (_ forwarded

request _ request

forwarded ---
reply Q reply

Figure 3. Broker model for forwarding client requests

The request broker architecture frees client applications from having to know where and how to
obtain particular services. A client application only needs to know the names for the particular
services it expects to request and how to use the request broker API to request those services.
Unfortunately, current models are restricted to one-to-one interactions between a single client
and a single server. The Server Group eliminates this restriction, extending the broker model to

support one-to-many interactions.

308

OBJECT-ORIENTED COMMUNICATION MIDDLEWARE

Communication middleware refers to software tools that insulate application developers from the
complexities of network programming. Middleware generally encompasses some form of
systems-level software, or "kernel," together with high-level developer tools (Adler, 1992b).
Kernels interface directly to the network protocols that enable communication between remote

computers, such as TCP/IP and NetBIOS. Developer tools generally consist of API libraries,
which direct the kernel to establish connections between specific computers and to exchange
information between the desired applications. The API conceals system-level dependencies
across heterogeneous computers, operating systems, and protocols.

Message-passing middleware enables applications to interact by exchanging high-level messages,
as opposed to the function call approach embodied in Remote Procedure Calls (Corbin, 1991).
A messaging middleware kernel consists of message queues, queue management services, and
transport services (i.e. network drivers). Client applications use a messaging API to post request
messages to the outbound queue of their local kernel. The kernel transparently transports the
message to the inbound queue of the remote kernel, from which the remote server can retrieve it.
The server replies to the client through a similar process. This model is convenient for simple
client-server exchanges. However, it provides inadequate support for coordinating the complex

one-to-many interactions described earlier. As a result, developers must construct suitably
extended control apparatus on top of the messaging middleware, and integrate it into their
applications.

The present work builds on NetWorks!, an object-oriented middleware tool that provides
application connectivity across heterogeneous PC, workstation, and mainframe computing
platforms. NetWorks! addresses the shortcomings of conventional messaging tools by adding a
scheduler to the kernel and introducing active objects called Agents. An Agent consists of: (1)
standard program code, such as C or C++; (2) calls to the high-level NetWorks! API library; and
(3) calls to application APIs. The scheduler delivers inbound messages to the relevant Agents,
which interact with local applications by injecting message data or commands. The scheduler
also interacts with Agents to send messages outbound from local applications to remote kernels
and Agents (cf. Figure 4). The NetWorks! API enables developers to program these messaging
interactions between applications, Agents, and the kernel. NetWorks! provides an intuitive
middleware implementation framework for client-server and peer-to-peer interactions because
Agents can initiate and react to both request and response messages.

Computer-I logical Computer-II

_ _ interface :f __

AP_Jffy_) AP_ "_oV_i_o_r

........ -T-i-..................

INetWorks! _ [NetWorks!] Systems

Messaging IMessaging Software
Kernel [Kernel

os-i ,_ tl os-n
network protocols

Middleware

Figure 4. Conceptual Architecture of the NetWorks! middleware tool

In essence, Agents represent active participants in distributed interactions, interfacing with, but
distinct from both applications and messaging kernels. As such, they constitute a separate locus

309

of control that can be used not only to integrate applications, but also to integrate control
models for coordinating distributed application Agents. Equally important, NetWorks! Agents
can reuse and selectively specialize behavior from other Agents, through object-oriented
inheritance.

The NetWorks! Developer Services Library (NDSL) exploits both of these properties. The
NDSL consists of a set of predefined Agents that integrate various distributed control models.
Each such Agent supports a high-level, service-oriented API that conceals the underlying
NetWorks! messaging API. Client applications use the NDSL API to issue service requests and
retrieve responses oblivious to the Agents, messaging kernels, and complex distributed

processing required to satisfy their requests. The next two sections describe the NDSL Server
Group Agents, which were developed specifically to coordinate one-to-many client-server
interactions.

THE SERVER GROUP COORDINATION ENGINE

The NDSL Server Group coordination model derives directly from process group technology.
Client applications communicate requests to a Server Group via the high-level NDSL API. The
Server Group then coordinates the activities of individual group members to provide the
requested service (cf. Figure 5). The Server Group is the source of all intragroup communication
for replicating or decomposing client requests, and the target of all server responses. The Server
Group combines server responses as necessary, returning a single reply to the client.

The Server Group Agent exploits inheritance by reusing a parent NDSL model called the Service
Request Manager (SRM). The SRM provides a conventional request broker capability for
coordinating one-to-one client-server interactions. The Server Group selectively specializes
inherited SRM broker object behaviors to support one-to-many client-server interactions. In

ivarticular, extensions were made to:

the SRM API for registering and requesting services.
the SRM broker directory, for describing functionally redundant servers,
decomposing complex services, and combining results from multiple servers.
the broker control model for dispatching requests and collecting server replies.

Intergroup communication
I ! I

Intragroup communication

request
Server

reply
Server

Figure 5. Server Group Architecture for functionally redundant servers

Server Group API

Standard request brokers presuppose that individual services are supported by single, unique
servers. Simple directory lookup methods suffice to match client requests against registered
servers. One-to-many client-server interactions require added capabilities for describing

functionally redundant servers and determining which servers must be invoked to support
(complex) requests. The Server Group reflects the first requirement by extending the SRM with a
group-oriented registration API. Servers use this API to register as group members with a Server

310

Group.Membershipentries coexist in the Server Group directory with service entries registered
via the SRM broker API. The group-oriented API functions include:

• SGMGroupCreate -- creates a group with the specified name and attributes.

• SGMGroupJoin -- registers an application or Agent server. 2
• SGMGroupLeave -- removes an individual server from a group.
• SGMGroupSuspend -- suspends a server from the active membership list so it is not

used in current group requests, but preserves its directory entry.
• SGMGroupRejoin -- cancels a server's suspension from a group, and reinstates that

group member for active service.

• SGMCreateProfile -- assigns server profile attribute values for a group member (used in
conjunction with SGMGroupJoin).

• SGMGroupMsgSend -- multicasts a message to all group members. Multicast is a
selective variant of broadcasting, which automatically sends a message to all nodes
specified bya membership list rather than to all network nodes.

Server Group Directory and Client Request API

The Server Group extends the SRM broker directory and API to enable multiple servers to

register the same service capability. To accommodate functional redundancy, a Server Group
directory entry specifies not only the service name, a server, and its location, but also a server
profile data object. A server profile specifies that server's attributes in providing a service, such
as relative speed, completeness, and precision. Server profiles are identical for servers that are

exact replicas, but differ for redundant but complementary servers. Attributes take integer
values, ranging from I (minimal) to 5 (maximal). For example, a rule-based diagnostic system
might be assigned values of 3 for relative speed and 3 for completeness vs. values of I (slow)
and 5 (very complete) for a competing model-based reasoning system. The value 0 indicates that
an attribute is not relevant for a given service and should be ignored. Server profiles are
extensible, allowing new attributes to be defined to meet application-specific requirements.

Client APIs for request brokers such as the SRM invoke a service by specifying the desired
service name and appropriate call parameters. For example, a database query would specify
"DBMS-query" as the service type and "Corporate-DB" and "select * from dept where..." as the

call arguments. To support redundant servers, the Server Group client API adds a request
profile object, which specifies: (1) the maximum number of servers desired; (2) the maximum
difference to tolerate between server and request profiles; and (3) an embedded server profile.
Thus, the server profile is used both by the Server Group to model the attributes of a server in
providing a particular service, and by clients to specify the desired attributes of potential
servers for carrying out that service.

Server Group Router

A conventional request broker routes a request to the server specified by the directory entry for

the requested service type. The Server Group must also support replicating client requests to

2 Both applications and Agents can register with an SRM or Server Group. An Agent can be

viewed as an application with one exportable function (which activates the Agent). Registering
an application enables clients to invoke service functions within that application. For example,
a spreadsheet might register, and thereby export its recalculation function. The SRM or Server
Group creates and stores handles to registered functions, which it uses thereafter to invoke the
desired services for clients. The primary tradeoff is that Agents are useful in virtue of
inheritance-based reusability of behaviors, whereas performance is better if application services

are invoked directly rather than indirectly, via Agents.

311

send to functionally redundant servers, and decomposing complex service requests into requests
for independent subservices. It is straightforward to extend a standard router to support

request replication. However, a front-end preprocessor must be added for handling complex
requests. The Server Group router algorithm: (1) decomposes the requested service if necessary;
(2) extracts candidate servers from directory; (3) filters candidates with respect to an internal

match algorithm; and (4) dispatches request task(s) to surviving server candidates.

The Server Group router only invokes the preprocessor (Step 1) on requests for complex services.
Complex services are identified by the fact that the Server Group itself is registered as their
server. To support decomposition, the server registration API requires a function pointer to be
supplied for complex services. The executable code for that procedure must be co-resident with
the Server Group. The procedure's input consists of the service entry from the directory

corresponding to the complex service type specified in the client's request. The procedure returns
a list of directory entries that correspond to the constituent subservices for that composite
service.

In Step 2, the Server Group router reuses SRM lookup functionality to extract candidate servers
from its directory based on the client's requested service type. In Step 3, the router executes a
match algorithm, which filters redundant servers for the client's request. The match algorithm
computes a differential between attribute values for the server profiles specified in the client
request profile and the directory service entry. Next, it sorts server candidates in order of
increasing differentials, eliminating all candidates whose differentials exceed the client's
specified threshold. Finally, the algorithm returns any remaining servers up to the limit specified
by the client request profile. For simple requests, the Server Group router then dispatches the
given request to all surviving servers (step 4). For complex service requests, the router loops
through Steps 2 through 4 for the list of subservices produced in Step 1.

This algorithm adds the absolute values of the differences between corresponding attribute
values for the client request profile's embedded server profile and the directory service entry's

server profile. Next, it sorts these server candidates with respect to increasing order of
differential totals. It then eliminates all candidate servers whose differential totals exceed the

threshold (if specified). The algorithm returns all surviving candidates up to the limit specified
by the client request profile. For simple requests, the Server Group router then dispatches the
given request to all surviving servers (step 4). For complex service requests, the router loops
through Steps 2 through 4 for the list of subservices produced in Step 1. The overall control
model is summarized graphically in Figure 6.

'Se Directory_ 11
rvicel

| Server l, Host 1, Server 1-profile, decomp-fcn 1, result-comb-fcn 1 term-cond
| Server2, Host2, Server2-profile, decomp-fcn2, result-comb-fcn 1 term-condl I
/ *** JISe,rvice-2

request {service,

_0 request profile } Se er
Group

reply 0 combineresults

route requests /
/

collect responses

A

A

Figure 6. Overview of control sequence for Server Group coordination model

312

Server Group Processingof Service Results

A conventional request broker routes the single response resulting from a service request back to
the requesting client. The Server Group requires more elaborate control mechanisms to collate
and process responses from multiple group members. Specifically, the Server Group must know:
(1) how to collect all responses for a given client request (which the Server Group may have
replicated or decomposed); (2) when to stop waiting for responses for the client request; and (3)
how to process the responses that have been collected up to that termination point.

With regards to issue (1), The Server Group relies on unique transaction identifiers generated by
NetWorks! to label and automatically track all messages dispatched to support a given
distributed interaction. With regards to (2), the Server Group uses a termination test predicate
to determine when to stop collecting responses. The choice of termination predicate for a service
depends largely on its desired result combination behavior. For example, all possible responses
should generally be collected before applying algorithms that synthesize results. Alternatively,
competitive result combination functions tend to collect the first N arrivals, or the first N

arrivals that satisfy some application-specific conditions. With regards to (3), once all relevant
responses are collected for a given client request, the Server Group applies the result
combination procedure for the relevant service. Similar to decomposing complex services, the
termination test and result combination functions are specified as pointers via the service
registration API, with the caveat that the executable codes reside on the Server Group host
computer. 3

REQUESTS FOR RELIABLE, REPLICATED SERVICES

The NDSL Reliable Server Group provides a generic engine for the two phase commit protocol to
support replicated databases and other transaction-oriented applications that obtain reliability
through replicated servers (Ceri, 1984). The Reliable Server Group inherits most of its
capabilities from the basic Server Group, specializing just two behaviors. First, the router omits
the candidate filtering process; client requests are automatically multicast to all servers
registered to support the relevant service. The Reliable Server Group then combines responses as
per the standard Server Group control model. Responses indicate either success or failure (due
to dropped communication links, failed host processors, or errors generated during server
processing of requests). Second, the Reliable Server Group initiates another round of messages to
the servers before responding to the client. Specifically, it rnulticasts a Commit message if all
servers acknowledged success, causing them to commit their service actions as permanent

transactions. Otherwise, it sends an Abort message to undo or "rollback" any temporary state
changes. The two sets of messaging interactions are depicted in Figure 7. In order to exploit this
reliable interaction model, server Agents or applications must be designed to support the second
sequence of messages, which is absent from the standard Server Group.

3 The Server Group filters redundant servers based on client request profiles, so it cannot

determine in advance which servers will be selected. Consequently, result combination and
termination test functions must be identical across all servers that register a given service.

313

!

I _ responses /_"__

'_ acknowledg_ Ii _ acknowledge _

,,
Figure 7. Two phase commit coordination model of the Reliable Server Group

DISCUSSION

Aside from the literature on process groups, research on cooperative coordination models has
been most active in the context of Distributed Artificial Intelligence or DAI. Most DAI research

focuses on specific _types of coordination architectures for cooperating, intelligent servers, such
as contract nets, blackboard architectures, and negotiation models (Bond and Gasser, 1988;
Gasser and Huhns, 1989). Server Groups differ from such systems in several respects. First,

Server Groups provide a centralized control module to manage passive servers, whereas DAI
models tend to distribute control among autonomous servers. Second, the NDSL Server Groups

were designed to support relatively coarse grained interactions among member servers, whereas
DAI servers solve problems through more intensive, fine grained interactions. Third, Server
Groups possess the flexibility to support radically different control behaviors for specific
services simultaneously, whereas DAI models typically establish a uniform, global protocol

tailored to specific (classes of) applications.

The NDLS Server Group is subject to two potential drawbacks common to centralized control

models, degraded performance under heavy traffic loading, and reliability limitations due to a
critical, single point of failure. The Server Group uses the NetWorks! non-blocking
(asynchronous) messaging capability to minimize overheads due to group-based communication
and server processing. Request decomposition tends to have minimal impact on performance
except in systems with intensive request traffic and/or real-time constraints. The most serious
problem arises from result combination behaviors that are computationally intensive, such as
relational joins on large data sets or detecting and resolving conflicts across partial plan or
schedule segments. Such processing can hold up or block brokering of lower overhead client
requests. (It must be noted that decentralized models incur different, but comparable overheads

in providing equivalent distributed communication and coordination functions.)

Performance can be improved significantly by isolating processing-intensive result combination
behaviors, using distributed architectures that integrate SRMs with Server Groups (cf. Figure 8).
All client requests are addressed to an SRM, which brokers non-group tasks and routes requests
for group services involving compute-intensive processing to a remote, dedicated Server Group.
The Server Group acts as a single logical server with respect to the SRM, isolating computation
and concealing the group-based processing. Multiple Server Groups can be introduced as
appropriate. Such hybrid configurations illustrate the power of the NDSL building block
approach to combine the design simplicity of centralized coordination models with the
concurrent processing advantages of distributed control architectures.

As for fault tolerance, the SRM and Server Groups are currently being enhanced for greater

reliability via an automated recovery design based on standard checkpointing and message-

logging techniques (Strom, 1985). Control extensions to support fault tolerant transparency are

314

alsobeinginvestigated, involving automated detection and management of group member server
failures (Birman, 1993).

simple service request simple
service

client request

group request 2 SRM

@
group request 1

Server
Server

group
requests

Server

Server

Server

Server

Server

Figure 8. Hybrid Distributed Coordination Model

EXAMPLE APPLICATION

A prototype NDSL Server Group was built to simulate group-based coordination of rule-based
systems for distributed operations support of the space station (Ringer, 1991; Walls, 1990).
These applications automate fault detection, isolation, and recovery functions (FDIR) for the
primary power generation and distribution subsystem (PGDS) and module power subsystems
(MPSs). PGDS manages the supply of power to MPSs, which manage power consuming
components within Laboratory and Habitation modules. The FDIR expert systems must
interact cooperatively to reflect the architectural interfaces between their target systems. The
FDIR-Server Group coordinates these interactions. Two additional FDIR systems that do not
actually exist, a model-based reasoner and a neural net, were simulated to introduce functional
redundancy of FDIR services for an MPS (cf. Figure 9).

The Server Group API was used to register the FDIR servers for the PGDS and MPS and their
respective services. A complex service for system-wide FDIR was also registered, which
decomposes into diagnostic service requests to the rule-based FDIR systems for both the PGDS
and the MPS. The client request API was then used to:

invoke the FDIR system to diagnose a problem specific to the PGDS.
invoke the functionally redundant FDIR systems to diagnose a problem in the MPS.
Different client request profiles were specified to invoke different numbers and kinds of
FDIR servers for the MPS.

invoke the system-level FDIR service to isolate a problem that could originate in either
the MPS or PGDS.

This last test demonstrates a global management capability, in which reports of anomalies
trigger coordinated system-wide FDIR activity. (Appendix A lists a partial execution trace for
this particular Server Group control test.) Server Group architectures are attractive for complex
applications such as distributed operations support because of their modularity and
extensibility. New capabilities, such as FDIR applications for different MPSs, can be integrated
incrementally, without having to modify (the knowledge bases of) existing group members. All
knowledge concerning subsystems and their interrelationships can be isolated within the Server
Group, via service decomposition and result combination behaviors. These behaviors, if they are
sufficiently complex, may themselves be implemented as system-level intelligent applications.

315

spacestationpowermanagementsubsystems

[PGDS(powersupplier)[IMPS(powerconsumer)[

Figure9. Demonstrationscenariofor the NDSL Server Group

CONCLUSIONS

The NetWorks! Server Group provides a generic, object-oriented engine for coordinating
distributed one-to-many client-server interactions. Major application areas include distributed
decision and operations support, data analysis, concurrent engineering, process control, and
office automation. The Server Group reuses and specializes a one-to-one client-server request
broker model. The extensions adapt process group transparency concepts to exploit functionally
redundant servers and to manage client requests for complex services. High level APIs are used

to specify server attributes, client request profiles, and request management behaviors specific to
particular services. The Reliable Server Group extends the Server Group's model for managing
replicated servers by incorporating a two phase commit protocol for reliability. Both models rely
on a modular, communication middleware substrate for transparent application connectivity.

The NDSL Server Groups and related NetWorks! tools insulate developers and end-users from
the distribution and heterogeneity of networked applications and their computing platforms.
They also minimize the complexities associated with designing, implementing, maintaining, and
extending the apparatus for coordinating one-to-many interactions among networked clients
and servers.

ACKNOWLEDGMENTS

The NetWorks! Server Group technology described in this paper has been developed with
funding from the NASA Small Business Innovative Research Program under NASA contracts
NAS8-39343 and NAS8-39905.

REFERENCES

R. M. Adler. (1992a) "Coordinating Complex Problem-Solving Among Distributed Intelligent

Agents." Telematics and Informatics. Vol. 9. Nos. 3&4. pp. 191-204.

R. M. Adler. (1992b) "Object-Oriented Tools for Distributed Computing." NASA Proceedings for

Technology 2002 Conference. NASA CP-3189. pp. 146-155.

K. Birman. (1993) "The Process Group Approach to Reliable Distributed Computing."
Communications of the ACM. Vol. 36. No. 12. pp. 36-53.

A.H. Bond and L. Gasser. eds. Readings in Distributed Artificial Intelligence. Morgan-Kaufmann.

San Mateo, California. 1988.

316

S.Ceri and G. Pelagatti. (1984) Distributed Databases, Principles and Systems. McGraw-Hill. New
York.

J. R. Corbin. (1991) The Art of Distributed Applications: Programming Techniques for Remote
Procedure Calls. Springer-Verlag. New York.

G. Coulouris and J. Dollimore. (1988) Distributed Systems: Concepts and Design. Addison-Wesley,
Reading, Massachusetts.

L. Gasser and M. Huhns. eds. (1989) Distributed Artificial Intelligence, volume II. Morgan-
Kaufmann. San Mateo, California.

M. F. Kasshoek, A. S. Tanenbaum, and K Versteop. (1993) "Group communication in Amoeba
and its applications." Distributed System Engineering. Vol. 1. pp. 48-58.

L. Liang, S. Chanson, and G. Neufeld. (1990) "Process Groups and Group Communi-cations:

Classifications and Requirements." IEEE Computer. Vol. 23. No. 2. pp. 56-66.

Object Management Group and X/Open. (1991) "The Common Object Request Broker:
Architecture and Specification." OMG Document No. 91.12.1 (revision 1.1), OMG, Framingham,
Mass.

M. Ringer, T. Quinn, and A. Merolla. "Autonomous Power System Intelligent Diagnosis and
Control." (1991) Proceedings of the 1991 Goddard Conference on Space Applications of Artificial
Intelligence. NASA CP-3110. pp. 153-168.

R. Strom and S. Yemini. (1985) "Optimistc recovery in distributed systems." ACM Transactions on
Computing Systems. Vol. 3. No. 3. Aug 1985. pp. 204-226.

B. Walls, D. Hall, and L. Lollar. (1990) "Augmentation of the Space Station Module Power
Management and Distribution Breadboard." Proceedings 4th Workshop on Space Operations Applications
and Research (SOAR '90). NASA CP-3103. pp. 355-361.

317

APPENDIX A

......... Partial Listing of FDIR SERVER GROUP Directory
service systemlevel-powersys-fdir labmodule-powersysfdir

server-agent fdir-grp rulelm
server-sys markov hertz
server-profile completeness 4 completeness 3

certainty 4 certainty 3
speed 2 speed 3

decomp-algorithm sys-fdir-decomp nil
term-condition nil (default) nil

result-comb-alg combine-sys-fdir-results combine-mps-fdir-results

GROUP-MEMBERS

(nntwklm hertz) (mbrlm markov) (rulelm hertz) (pgds markov)

......... TRACE OF CLIENT REQUEST TO DIAGNOSE SYSTEM-LEVEL PROBLEM

Client Requesting System-Level Diagnosis for Power Mgmt. System...

FDIR-GRP Filtering Group Candidates for Service Type systemlevel-powersys-fdir...

Client Request Profile:
Max Servers: 10000 Discrim. Threshhold 10000 ;;;; defaults - use all candidate servers

Completeness 0 Precision 0 Certainty 0 Timeliness 0 ;;; ignore all server attributes
Candidates: ((systemlevel-powersys-fdir fdir-grp))
Applying Decomposition Algorithm ;;; Invoke Decomposition
Substituting services (primary-powersys-fdir labmodule-powersys-fdir) ;;; Subtask servers

Dispatching service systemlevel-powersys-fdir for SGROUP execution...
Symptoms: ("PDCU-B Bus-A LC1 RPC 3 PDCU-B Switch RBI.3/1 Power 2.38")
Routing primdry-powersys-fdir task to Agent APGDS... ;;;Send to subserver 1
Routing labmodule-powersys-fdir task to Agent ARULELM... ;;;Send to subserver 2

,,,

Agent APGDS Responding to Request for Service primary-powersys-fdir... ;;; PGDS Server
injecting symtom data into PGDS ... diagnosing.., diagnosis completed.
APGDS extracting diagnostic conclusions from PGDS:
Leakage-path high-to-low transmission-line RPC.3/6 load

Posting result to FDIR-GRP...

Agent ARULELM Responding to Request for Service labmodule-powersys-fdir... ;;; MPS Server
injecting symtom data into RULELM ... diagnosing.., diagnosis completed.
ARULELM extracting diagnostic conclusions from RULELM:
Low-impedance-short cable below switch
Low-impedance-short switch output of switch
Low-impedance-short switch input of a lower switch

Posting result to FDIR-GRP...
.,,

FDIR-GRP Responses collected for systemlevel-powersys-fdir request

Applying Result Combination Algorithm COMBINE-SYS-FDIR-RESULTS...
Conclusions: ;;;; result combination algorithm - logical union operation
PGDS "Leakage-path high-to-low transmission-line RPC.3/6 load"

RULELM "Low-impedance-short cable below switch"
"Low-impedance-short switch output of switch"
"Low-impedance-short switch input of a lower switch"

318

